
Stephen Checkoway

Programming Abstractions
Lecture 5: Variations on let

What values does this code return?

(define (foo x)

 (let ([y (add1 x)]

 [z (* 2 x)])

 (+ y z)))

(foo 3)

A. 10

B. 11

C. 12

D. Some other value

E. Error

2

What values does this code return?

(define (bar x)

 (let ([x (add1 x)]

 [z (* 2 x)])

 (+ x z)))

(bar 3)

A. 10

B. 11

C. 12

D. Some other value

E. Error

3

A common problem

When writing programs, it's not uncommon to define some local variables in

terms of other local variables

Example: Return the elements of a list of numbers that are at least as large as

the first element (the head) of the list, in reverse order

(define (at-least-as-large lst)  
 (cond [(empty? lst) empty]  
 [else  
 (let ([head (first lst)]  
 [bigger (filter (λ (x) (>= x head)) lst)])  
 (reverse bigger))]))

This doesn't work; we can't use head in the definition of bigger

The issue

The issue is the scope of the binding for head: just the body of the let

One (bad) work around would be to use multiple lets

(define (at-least-as-large lst)  
 (cond [(empty? lst) empty]  
 [else  
 (let ([head (first lst)])  
 (let ([bigger (filter (λ (x) (>= x head)) lst)])  
 (reverse bigger)))]))

Sequential let
(let* ([id1 s-exp1] [id2 s-exp2]…) body)

Later s-exps can use earlier ids, e.g., 

(let* ([x 5]  
 [y (foo x)]  
 [z (+ x y)])  
 (bar z y))

Returning to our example

(define (bar x)

 (let* ([x (add1 x)]

 [z (* 2 x)])

 (+ x z)))

(bar 3)

A more realistic example

Write a procedure (split-by pred lst) that splits lst into two lists, the first contains

all of the elements that match pred, the second contains all the elements that

do not match pred

(split-by even? (range 10)) => '((0 2 4 6 8) (1 3 5 7 9))

(split-by (λ (x) (< x 3)) (range 5)) => '((0 1 2) (3 4))

(define (split-by pred lst)

Another problem: recursion

Often, we're going to want to define a recursive procedure but we can't do that

with let or let*

(let ([fact (λ (n)  
 (if (<= n 1)  
 1  
 (* n (fact (sub1 n))))])  
 (fact 5))

We can't use fact in the definition of fact

Recursive let
(letrec ([id1 s-exp1] [id2 s-exp2]…) body)

All of the s-exps can refer to all of the ids

‣ This is used to make recursive procedures 

(letrec ([fact (λ (n)  
 (if (<= n 1)  
 1  
 (* n (fact (sub1 n))))])  
 (fact 5))

Recursive let drawback (subtle)

The values of the identifiers we're binding can't be used in the bindings

Invalid (the value of x is used to define y)

‣ (letrec ([x 1]  
 [y (+ x 1)])  
 y)

Valid (the value of x isn't used to define y, only when y is called)

‣ (letrec ([x 1]  
 [y (λ () (+ x 1))])  
 (y))

